Inverse Source Problems for the Helmholtz Equation and the Windowed Fourier Transform
نویسندگان
چکیده
In this work we extend the qualitative reconstruction method for inverse source problems for time-harmonic acoustic and electromagnetic waves in free space, recently developed in [R. Griesmaier, M. Hanke, and T. Raasch, SIAM J. Sci. Comput., 34 (2012), pp. A1544–A1562], to a relevant three-dimensional setting. The reconstruction algorithm relies on the fact that a windowed Fourier transform of the far field pattern of the wave radiated by a compactly supported source approximates an exponential ray transform with a purely imaginary exponent of a mollified version of the source. A filtered backprojection scheme for the standard ray transform applied to the absolute values of the windowed Fourier transform of the far field pattern is used to recover information on the support of the source. We provide the theoretical foundation of the method, discuss a numerical implementation of the fully three-dimensional algorithm, and present a series of numerical examples, including an inverse scattering problem, to support our theoretical results.
منابع مشابه
An inverse random source problem for the Helmholtz equation
This paper is concerned with an inverse random source problem for the one-dimensional stochastic Helmholtz equation, which is to reconstruct the statistical properties of the random source function from boundary measurements of the radiating random electric field. Although the emphasis of the paper is on the inverse problem, we adapt a computationally more efficient approach to study the soluti...
متن کاملOn the inverse windowed Fourier transform
The inversion problem concerning the windowed Fourier transform is considered. It is shown that, out of the infinite solutions that the problem admits, the windowed Fourier transform is the “optimal” solution according to a maximum-entropy selection criterion.
متن کاملSpectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2012